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III.  INTRODUCTION TO LOGISTIC REGRESSION

1. Simple Logistic Regression

a)  Example:  APACHE II Score and Mortality in Sepsis

The following figure shows 30 day mortality in a sample of septic 
patients as a function of their baseline APACHE II Score.  
Patients are coded as 1 or 0 depending on whether they are dead 
or alive in 30 days, respectively.
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We wish to predict death from baseline APACHE II score in these 
patients.

Let π(x) be the probability that a patient with score x will die.

Note that linear regression would not work well here since it could 
produce probabilities less than zero or greater than one.
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b)  Sigmoidal family of logistic regression curves

Logistic regression fits probability functions of the following form:

p a b a b( ) exp( ) / ( exp( ))x x x= + + +1

This equation describes a family of sigmoidal curves, three examples of 
which are given below.

( )a b+ Æx 0 x Æ -•
p( ) / ( )x Æ + =0 1 0 0

For negative values of x,   exp                       as

and hence
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c)  Parameter values and the shape of the regression curve

p a b a b( ) exp( ) / ( exp( ))x x x= + + +1

For now assume that β > 0.

For very large values of x,                             and henceexp( )a b+ Æ •x
p( ) ( )x Æ • +• =1 1
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p a b a b( ) exp( ) / ( exp( ))x x x= + + +1

x x= - + =a b a b/ , 0 p( ) .x = + =1 1 1 05b gWhen                                      and hence

The slope of π(x) when π(x)=.5 is β/4.

Thus β controls how fast π(x) rises from 0 to 1.

For given β, α controls were the 50% survival point is located. 

Data with a lengthy transition from survival to death should have a low 
value of β. 
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Data that has a sharp survival cut off point between patients who live 
or die should have a large value of β.
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p a b a b( ) exp( ) / ( exp( ))x x x= + + +1

1- =p( )x

d)  The probability of death under the logistic model

This probability is

{3.1}

Hence                      probability of survival              

= + + - +
+ +

1
1

exp( ) exp( )
exp( )

a b a b
a b

x x
x

log( ( ) ( ( ))p p a bx x x1- = +
The log odds of death equals

{3.2}

, and the odds of death is

p p a b( ) ( ( )) exp( )x x x1- = +

= + +1 1( exp( ))a bx

e)  The logit function

For any number π between 0 and 1 the logit function is defined by

logit( ) log( / ( ))p p p= -1

Let di =

xi be the APACHE II score of the ith patient

1

0

:

:

  patient dies 

  patient lives

th

th

i

i

RST

( ) ( ) Pr[ 1]i i iE d x d= p = =
Then the expected value of di is 

Thus we can rewrite the logistic regression equation {5.2} as

{3.3}logit( ( )) ( )i i iE d x x= p = a + b
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2.  Contrast Between Logistic and Linear Regression

In linear regression, the expected value of yi given xi is

forE y xi i( ) = +a b i n=1 2, ,...,

a b+ xi
is the linear predictor.

it is the random component of the model, which has a 
normal distribution.

yi has a normal distribution with standard deviation σ.

In logistic regression, the expected value of      given xi is E(di) = id

logit(E(di)) = α + xi β for i = 1, 2, … , n

[ ]i ixp = p

id is dichotomous with probability of event [ ]i ixp = p
it is the random component of the model

logit is the link function that relates the expected value of the 
random component to the linear predictor.

3.     Maximum Likelihood Estimation

In linear regression we used the method of least squares to estimate 
regression coefficients. 

In generalized linear models we use another approach called 
maximum likelihood estimation. 

The maximum likelihood estimate of a parameter is that value that 
maximizes the probability of the observed data.

We estimate α and β by those values and     that maximize the 
probability of the observed data under the logistic regression model.

â b̂
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APACHE 
II Score

Number 
o f 

Patients

Number 
o f 

Deaths

0 1 0 20 13 6
2 1 0 21 17 9
3 4 1 22 14 12
4 11 0 23 13 7
5 9 3 24 11 8
6 14 3 25 12 8
7 12 4 26 6 2
8 22 5 27 7 5
9 33 3 28 3 1
10 19 6 29 7 4
11 31 5 30 5 4
12 17 5 31 3 3
13 32 13 32 3 3
14 25 7 33 1 1
15 18 7 34 1 1
16 24 8 35 1 1
17 27 8 36 1 1
18 19 13 37 1 1
19 15 7 41 1 0

This data is 
analyzed as 
follows…

. tabulate fate

Death by 30 |
days |      Freq.     Percent        Cum.

------------+-----------------------------------
alive |        279       61.45       61.45
dead |        175       38.55      100.00

------------+-----------------------------------
Total |        454      100.00
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. histogram apache [fweight=freq ], discrete

(start=0, width=1)
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Logit estimates                                   Number of obs   =        454
LR chi2(1)    =      62.01
Prob > chi2     =     0.0000

Log likelihood = -271.66534                       Pseudo R2       =     0.1024

------------------------------------------------------------------------------
fate | Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
apache |   .1156272   .0159997     7.23   0.000     .0842684     .146986
_cons |  -2.290327   .2765283    -8.28   0.000    -2.832313   -1.748342

------------------------------------------------------------------------------

â

b̂ = .1156272

= -2.290327

p a b a b( ) exp( ) / ( exp( ))x x x= + + +1

exp(-2.290327 + .1156272 )
1 exp(-2.290327 + .1156272 )

x
x

=
+

( ) exp(-2.290327 + .1156272 20)
20 0.50555402

1 exp(-2.290327 + .1156272 20)
¥p = =

+ ¥

logit( ( )) ( )i i iE d x x= p = a + b
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4.     Odds Ratios and the Logistic Regression Model

a)     Odds ratio associated with a unit increase in x

The log odds that patients with APACHE II scores of x and x + 1 will 
die are

logit {3.5}( ( ))p a bx x= +

( ( )) ( )p a b a b bx x x+ = + + = + +1 1

and

logit {3.6}

respectively.

subtracting {3.5} from {3.6} gives ( ( )) ( ( ))p px x+ -1 logitβ = logit

log
( ))

( )
log

( )
( )

p
p

p
p

x
x

x
x

+
- +
F
HG

I
KJ - -
F
HG

I
KJ

1
1 1 1=

and hence

exp(β) is the odds ratio for death associated with a unit 
increase in x.

( ( )) ( ( ))p px x+ -1 logitβ = logit

p p
p p

( ) / ( ( ))
( ) / ( ( ))

x x
x x

+ - +
-

F
HG

I
KJ

1 1 1
1

= log

A property of logistic regression is that this ratio remains constant 
for all values of x.  



10

5.     95% Confidence Intervals for Odds Ratio Estimates

In our sepsis example the parameter estimate for apache (β) was 
.1156272 with a standard error of .0159997.  Therefore, the odds ratio 
for death associated with a unit rise in APACHE II score is 

exp(.1156272) = 1.123

with a 95% confidence interval of 

(exp(0.1156 - 1.96×0.0160), exp(0.1156 + 1.96×0.0160)) 

= (1.09, 1.15).

6.  Quality of Model fit

If our model is correct then

( ) ˆˆlogit observed proportion ix= a + b

It can be helpful to plot the observed log odds against ˆˆ ixa +b
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Then it can be shown that the standard error of  is

=ˆˆse xÈ ˘a + bÎ ˚
2 2 2

ˆ ˆˆ ˆ
2x xa ab bs + s + s

7.     95% Confidence Interval for

Let        and         denote the variance of     and    .

Let         denote the covariance between     and  .

[ ]xp

2
âs

2
b̂s â b̂

ˆâbs â b̂

xa + b

ˆ ˆˆ ˆ1.96 sex xÈ ˘a + b ± ¥ a + bÎ ˚

A 95% confidence interval for             is 
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Hence, a 95% confidence interval for          is 
, where

and

[ ]xp
[ ] [ ]( )ˆ ˆ,L Ux xp p

[ ]
ˆ ˆˆ ˆexp 1.96 se

ˆ
ˆ ˆˆ ˆ1 exp 1.96 se

L

x x
x

x x

È ˘È ˘a + b - ¥ a + bÎ ˚Î ˚p =
È ˘È ˘+ a + b - ¥ a + bÎ ˚Î ˚

[ ]
ˆ ˆˆ ˆexp 1.96 se

ˆ
ˆ ˆˆ ˆ1 exp 1.96 se

U

x x
x

x x

È ˘È ˘a + b + ¥ a + bÎ ˚Î ˚p =
È ˘È ˘+ a + b + ¥ a + bÎ ˚Î ˚

A 95% confidence interval for     is xa + b

ˆ ˆˆ ˆ1.96 sex xÈ ˘a + b ± ¥ a + bÎ ˚

( ) ( ) ( )( )exp / 1 expi i ix x xp = a + b + a + b
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It is common to recode continuous variables into categorical variables in order 
to calculate odds ratios for, say the highest quartile compared to the lowest.

. centile apache, centile(25 50 75)

-- Binom. Interp. --
Variable | Obs Percentile      Centile        [95% Conf. Interval]

-------------+-------------------------------------------------------------
apache |     454         25            10               9 11

|                 50            14        13.60845 15
|                 75            20              19 21

. generate float upper_q= apache >= 20

. tabulate upper_q

upper_q |      Freq.     Percent        Cum.
------------+-----------------------------------

0 |        334       73.57       73.57
1 |        120       26.43      100.00

------------+-----------------------------------
Total |        454      100.00
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. cc fate upper_q if apache >= 20 | apache <= 10

Proportion

|   Exposed   Unexposed  |     Total     Exposed

-----------------+------------------------+----------------------

Cases |        77          25  |       102      0.7549

Controls |        43         101  |       144      0.2986

-----------------+------------------------+----------------------

Total |       120         126  |       246      0.4878

|                        |

|      Point estimate    |  [95% Conf. Interval]

|------------------------+----------------------

Odds ratio |         7.234419       |  3.924571    13.44099  (exact)

Attr. frac. ex. |         .8617719       |  .7451951    .9256007  (exact)

Attr. frac. pop |         .6505533       |

+-----------------------------------------------

chi2(1) =    49.75  Pr>chi2 = 0.0000

This approach discards potentially valuable information and may not
be as clinically relevant as an odds ratio at two specific values.

Alternately we can calculate the odds ratio for death for patients at the 
75th percentile of Apache scores compared to patients at the 25th

percentile 

( (20)) 20p = a +b ¥logit

( (10)) 10p = a +b ¥logit

Subtracting gives 

( ) ( )( )
( ) ( )( )
20 / 1 20

log 10   0.1156 10 1.156
10 / 1 10

Ê ˆp - p
= b ¥ = ¥ =Á ˜p - pË ¯

Hence, the odds ratio equals exp(1.156) = 3.18

A problem with this estimate is that it is strongly dependent 
on the accuracy of the logistic regression model.
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Hence, the odds ratio equals exp(1.156) = 3.18

A problem with this estimate is that it is strongly dependent 
on the accuracy of the logistic regression model.

With Stata we can calculate the 95% confidence interval for this odds
ratio as follows:

. lincom 10*apache, eform

( 1)  10 apache = 0

------------------------------------------------------------------------------
fate | exp(b)   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) |   3.178064   .5084803     7.23   0.000     2.322593    4.348628

------------------------------------------------------------------------------

Simple logistic regression generalizes to allow multiple covariates

logit 1 2 21( ( )) ...i i i k ikE d x x x= a + b + b + + b

where
xi1, x12, …, xik are covariates from the ith patient

α and β1, ...βk, are known parameters

di = 1: ith patient suffers event of interest
0: otherwise 

Multiple logistic regression can be used for many purposes.  One
of these is to weaken the logit-linear assumption of simple logistic 
regression using restricted cubic splines.
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8.  Restricted Cubic Splines

1t 2t 3t

1 2, , , kt t t

Linear before    and after    . 1t kt

Piecewise cubic polynomials between adjacent knots
(i.e. of the form                              ) 3 2ax bx cx d+ + +

These curves have k knots located at                .  They are:

Continuous and smooth.

Given x and k knots a restricted cubic spline can be defined by

1 1 2 2 1 1k ky x x x - -= a + b + b + + b

for suitably defined values of ix

These covariates are functions of x and the knots but are 
independent of y.

1x x= and hence the hypothesis
tests the linear hypothesis.  

2 3 1k-b = b = = b

In logistic regression we use restricted cubic splines by modeling

( )( ) 1 1 2 2 1 1logit i k kE d x x x - -= a + b + b + + b

Programs to calculate                 are available in Stata, R and 
other statistical software packages.

1 1, , kx x -



17

We fit a logistic regression model using a three knot restricted cubic 
spline model with knots at the default locations at the

10th percentile,
50th percentile, and
90th percentile.

. rc_spline apache, nknots(3)
number of knots = 3
value of knot 1 = 7
value of knot 2 = 14
value of knot 3 = 25

. logit fate _Sapache1 _Sapache2

Logit estimates                                   Number of obs =        454
LR chi2(2)    =      62.05
Prob > chi2     =     0.0000

Log likelihood = -271.64615                       Pseudo R2       =     0.1025

------------------------------------------------------------------------------
fate | Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
_Sapache1 |   .1237794   .0447174     2.77   0.006      .036135    .2114238
_Sapache2 |  -.0116944   .0596984    -0.20   0.845     -.128701    .1053123

_cons |  -2.375381   .5171971    -4.59   0.000    -3.389069   -1.361694
------------------------------------------------------------------------------

Note that the coefficient for _Sapache2 is small and not significant, indicating 
an excellent fit for the simple logistic regression model.

Giving analogous commands as for simple logistic regression gives the 
following plot of predicted mortality given the baseline Apache score.

. drop prob logodds se lb_logodds ub_logodds ub_prob lb_prob

. rename prob_rcs prob

. rename logodds_rcs logodds

. predict se, stdp

. generate float lb_logodds= logodds-1.96* se

. generate float ub_logodds= logodds+1.96* se

. generate float ub_prob= exp( ub_logodds)/(1+exp( ub_logodds))

. generate float lb_prob= exp( lb_logodds)/(1+exp( lb_logodds))

. twoway (rarea lb_prob ub_prob apache, blcolor(yellow) bfcolor(yellow)) 
> (scatter proportion apache) 
> (line prob apache, clcolor(red) clwidth(medthick))

This plot is very similar to the one for simple logistic regression except the 95% 
confidence band is a little wider. 
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We calculate the odds ratio of death for patients at the 75th vs. 25th 
percentile of apache score as follows:

The logodds at the 75th percentile equals

( )( ) 1 2logit 20 20 5.689955 p = a +b ¥ + b ¥

This regression gives the following table of values

Percentile     Apache _Sapache1        _Sapache2

25                10                  10                 0.083333 
75                20                  20                 5.689955 

The logodds at the 25th percentile equals

( )( ) 1 2logit 10 10 0.083333  p = a + b ¥ + b ¥

Subtracting the second from the first equation gives that the log odds 
ratio for patients at the 75th vs. 25th percentile of apache score is 

( ) ( )( ) 1 2logit 20 / 10 10 5.606622  p p = b ¥ +b ¥

Stata calculates this odds ratio to be 3.22 with a 95% confidence 
interval of 2.3 -- 4.6 

. lincom _Sapache1*10 + 5.606622* _Sapache2, eform

( 1)  10 _Sapache1 + 5.606622 _Sapache2 = 0

------------------------------------------------------------------------------
fate | exp(b)   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) |    3.22918   .5815912     6.51   0.000      2.26875    4.596188

------------------------------------------------------------------------------

Recall that for the simple model we had the following odds ratio and 
confidence interval.

------------------------------------------------------------------------------
fate | exp(b)   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) |   3.178064   .5084803     7.23   0.000     2.322593    4.348628

------------------------------------------------------------------------------

The close agreement of these results supports the use of the simple 
logistic regression model for these data.
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9.     Simple 2x2 Case-Control Studies

a)  Example:  Esophageal Cancer and Alcohol

Breslow & Day, Vol. I give the following results from the Ille-et-Vilaine
case-control study of esophageal cancer and alcohol.

Cases were 200 men diagnosed with esophageal cancer in regional 
hospitals between 1/1/1972 and 4/30/1974.

Controls were 775 men drawn from electoral lists in each commune.

Esophageal Daily Alcohol Consumption

Cancer > 80g < 80g Total

Yes (Cases) 96 104 200

No (Controls) 109 666 775

Total 205 770 975

Then the observed prevalence of heavy drinkers is

d0/m0  = 109/775 for controls and 

d1/m1  = 96/200 for cases. 

The observed prevalence of moderate or non-drinkers is

(m0 - d0)/m0  = 666/775 for controls and 

(m1 - d1)/m1  = 104/200 for cases.

b)  Review of Classical Case-Control Theory

Let xi = 

mi =   number of cases (i = 1) or controls (i = 0)

di =   number of cases (i = 1) or controls (i = 0) who are heavy 
drinkers.

1 =RST
 cases          

0 =  for controls
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( / ) / [( ) / ] / ( )d m m d m d m di i i i i i i i- = -

The observed odds that a case or control will be a heavy drinker is

= 109/666 and 96/104 for controls and cases, respectively.

y

If the cases and controls are a representative sample from 
their respective underlying populations then 

1. is an unbiased estimate of the true odds ratio  for heavy 
drinking in cases relative to controls in the underlying 
population.

2.  This true odds ratio also equals the true odds ratio for 
esophageal cancer in heavy drinkers relative to moderate 
drinkers.

/ ( )
/ ( )

y = -
-

d m d
d m d

1 1 1

0 0 0

96 /104 
109 / 666 

The observed odds ratio for heavy drinking in cases relative to controls is 

=                         = 5.64

Case-control studies would be pointless if this were not true.

Since esophageal cancer is rare      
also estimates the relative risk of 
esophageal cancer in heavy drinkers 
relative to moderate drinkers.

y

Woolf’s estimate of the standard error of the log odds ratio is 

( )ˆlog
0 0 0 1 1 1

1 1 1 1
se

d m d d m dy = + + +
- -

( )ˆlogˆ ˆ exp 1.96seL y
È ˘y = y -Î ˚

( )ˆlogˆ ˆ exp 1.96seU y
È ˘y = y Î ˚

( )ˆ ˆ,L Uy y y

and the distribution of              is approximately normal.

Hence, if we let

and

then                is a 95% confidence interval for     .

( )ˆlog y
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Hence

and

since x1 = 1 and x0 = 0. 

log( / ( ))p p a b a b1 1 11 - = + = +x
log( / ( ))p p a b a0 0 01- = + =x

Consider the logistic regression model 

logit {3.9}

where                             Probability of being a heavy drinker for 
cases (i = 1) and controls (i = 0). 

( ( / ))E d m xi i i= +a b

E d mi i i( / ) = =p

10.     Logistic Regression Models for 2x2 Contingency Tables

logit( ) log( / ( ))p p p a bi i i ix= - = +1
Then {3.9} can be rewritten

log( / ( )) log( / ( ))p p p p b1 1 0 01 1- - - =

log
/ ( )
/ ( )

log( )
p p
p p

y b1 1

0 0

1
1
-
-

L
NM

O
QP = =

Subtracting these two equations gives

y b= eand hence the true odds ratio

a)   Estimating relative risks from the model coefficients

Our primary interest is in β. Given an estimate of β then b y b= e

b)  Nuisance parameters

α is called a nuisance parameter.  This is one that is required by the 
model but is not used to calculate interesting statistics.

11.     Analyzing Case-Control Data with Stata

Consider the following data on esophageal cancer and heavy drinking

cancer   alcohol  patients  

No     < 80g       666  
Yes     < 80g       104  
No    >= 80g       109  
Yes    >= 80g        96



23

. cc cancer alcohol [freq=patients], woolf

| alcohol                |             Proportion
|   Exposed   Unexposed  |     Total     Exposed

-----------------+------------------------+----------------------
Cases |        96         104  |       200      0.4800

Controls |       109         666  |       775      0.1406
-----------------+------------------------+----------------------

Total |       205         770  |       975      0.2103
|                        |
|      Point estimate    |  [95% Conf. Interval]
|------------------------+----------------------

Odds ratio |         5.640085       |  4.000589    7.951467  (Woolf)   
Attr. frac. ex. |         .8226977       |  .7500368    .8742371  (Woolf)
Attr. frac. pop |         .3948949       |

+-----------------------------------------------
chi2(1) =   110.26  Pr>chi2 = 0.0000

*
* Now calculate the same odds ratio using logistic regression
*

The estimated odds ratio is                      = 5.64
96 /104 

109 / 666 

. logistic alcohol cancer [freq=patients]

Logistic regression                                No. of obs =       975
LR chi2(1) = 96.43
Prob > chi2=    0.0000

Log likelihood =   -453.2224 Pseudo R2  =    0.0962

------------------------------------------------------------------------------
alcohol | Odds Ratio   Std. Err.       z     P>|z|       [95% Conf. Interval]
---------+--------------------------------------------------------------------
cancer |   5.640085   .9883491      9.87    0.000       4.000589    7.951467

------------------------------------------------------------------------------

This is the analogous logistic command for simple logistic 
regression.  If we had entered the data as

This commands fit the model

logit(E(alcohol)) = α + cancer*β

giving β = 1.73 = the log odds ratio of being a heavy drinker in 
cancer patients relative to controls.

The odds ratio is exp(1.73) =  5.64.

cancer heavy patients
0 109 775
1 96 200
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a)   Logistic and classical estimates of the 95% CI of the OR

The 95% confidence interval is 

(5.64exp(-1.96×0.1752), 5.64exp(1.96×0.1752)) = (4.00, 7.95).

The classical limits using Woolf’s method is

(5.64exp(-1.96×s), 5.64exp(1.96×s)) =(4.00, 7.95),

where s2 = 1/96 + 1/109 + 1/104 + 1/666 = 0.0307 = (0.1752)2.

Hence Logistic regression is in exact agreement with classical 
methods in this simple case.

gives us Woolf’s 95% confidence interval for the odds ratio.  We will 
cover how to calculate confidence intervals using glm in the next 
chapter.

In Stata the command
cc cancer alcohol [freq=patients], woolf


