
\qquad
\qquad
\qquad

Item Formats

- Dichotomous Format
- Two alternatives \qquad
- True/False
- MMPI/2; MMPI/A \qquad
- Polytomous or Polychotomous Format
- More than two alternatives \qquad
- Multiple choice
- Psy427 Midterm, SAT, GRE, \qquad
\qquad

Item Formats

- Distractors
- Item Formats
- Incorrect choices on a polychotomous test
- Best to have three or four
- BUT - \qquad
- one study (Sidick, Barret, \& Doverspike, 1994) found equivalent validity and reliability for a test with two distractors (three items) as one with four distractors (five items).
- SO, best might be to have two to four (further study is needed)

Should you guess on polytomous tests?

- Depends... Correction for guessing: \qquad
Corrected Score $=R-\frac{W}{n-1}$
- R is the number correct
- W is the number incorrect
- n is the number of polytomous choices
- If no correction for guessing, guess away.
- If there is a correction for guessing, better to leave some blank (unless you can beat the odds)

Cal State Northridge. Psy 427

Other Test Items

- Likert scales
- On a rating scale of 1-5, or 1-6, 1-7, etc. where
- 1 = strongly disagree
- 2 = moderately disagree
- 3 = mildly disagree
- 4 = mildly agree
- 5 = moderately agree
- 6 = strongly agree
- rate the following statements....

OtherTest Items

- Likert scales \qquad
- Even vs. odd number of choices
- Even numbers prevents "fence-sitting"
- Odd numbers allows people to be neutral
- Likert items are VERY popular measurement items in psychology.
- Technically ordinal but are often assumed continuous if 5 or more choices
- With that assumption we can calculate means, factor analyze, etc.

OtherTest Items

- Category format
- Like Likert, but with MANY more categories
- e.g., 10-point scale
- Best if used with anchors
- Research supports use of 7-point scales to 21point scales

OtherTest Items

- Visual Analogue Scale

No Headache
Worst Headache

- Also used in research
- dials, knobs
- time sampling

Checklists \& Q-Sorts

- Both used in qualitative research as well as quantitative research
- Checklists
- Present list of words (adjectives)
- Have person choose to endorse each item
- Can determine perceptions of concepts using checklists.

Checklists \& Q-Sorts

- Adjective Checklists (from
http://www.encyclopedia.com/doc/1087-AdjectiveCheckList.html)
- In psychometrics, any list of adjectives that can be marked as applicable or not applicable
- to oneself
- to one's ideal self
- to another person, OR
- to some other entity or concept.

Checklists \& Q-Sorts

- Checklists
- When written with initial uppercase letters (ACL), the term denotes more specifically a measure consisting of a list of 300 adjectives, from absent-minded to zany
- Selected by the US psychologist Harrison G. Gough (born 1921) and introduced as a commercial test in 1952.
- The test yields 24 scores, including measures of personal adjustment, self-confidence, self-control, lability, counselling readiness, some response styles, and 15 personality needs, such as achievement, dominance, and endurance.

Checklists \& Q-Sorts

- Q-Sorts
- Introduced by William Stephenson in 1935
- PhD in physics 1926; PhD in psychology in 1929
- Student of Charles Spearman
- Goal: to get a quantitative description of a person's perceptions of a concept
- Process: give subject a pile of numbered "cards" \& have them sort them into piles
- Piles represent graded degrees of description (most descriptive to least descriptive).

Checklists \& O-Sorts

- Q-Sorts
- Means of self-evaluation of client's current status
- The Q-Sort consists of a number of cards, often as many as 40 or 50 , even 100 items each consisting of a single trait, belief, or behavior.
- The goal is to sort these cards into one of five columns ranging from statements such as, 'very much like me' to 'not at all like me.'
- There are typically a specific number of cards allowed for each column, forcing the client to balance the cards evenly.
- Example:
- California Q-sort, Attachment Q-sort

Example Q-sort

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Attachment Q-sort

Cal State Northridge $\cdot P_{5 y} 427$

Item Analysis

- Methods used to evaluate test items.
- What are good items?
- Techniques
- Item Difficulty (or easiness)
- Discriminability
- Extreme Group
- Item/Total Correlation
- Item Characteristic Curves
- Item Response Theory
- Criterion-Referenced Testing

Item Difficulty

- The proportion of people who get a particular item correct or that endorse an item (if there is no "correct" response, e.g. MMPI)
- Often thought of as the item's easiness \qquad because it is based on the number correct/endorsed

Item Difficulty

- The difficulty can be given in proportion for or it can be standardized in to a Z-value \qquad
$Z=\frac{[\ln (1-p)]-\ln (p)}{1.7}$

Item Difficulty

\qquad

- For example a test with the difficulty of 84
$Z=\frac{(\ln (.16)-\ln (.84))}{1.7}$
$=\frac{(-1.83+.17)}{1.7}$
$=-1.66 / 1.7$
$=-1.00$
$(-2 \rightarrow 2$ is typical range)
Cal State Northridge-Psy 427 \qquad

Difficult Item (35\%)

If you are taking a criterion referenced test in a social psychology course and you need to score a 92 in order to get an A, the criterion is
a) Social Psychology * \qquad
b) Scoring a 92
c) Getting an A \qquad
d) Not enough info.

Difficult Item (35\%)

$$
\begin{aligned}
Z & =\frac{[\ln (1-p)]-\ln (p)}{1.7} \\
Z & =\frac{(\ln (.65)-\ln (.35))}{1.7} \\
& =\frac{(-.431+1.050)}{1.7} \\
& =.619 / 1.7 \\
& =.364
\end{aligned}
$$

Moderate Item (51\%)

The correlation between X and is .54. X has a SD of 1.2 and Y has a SD of 5.4. What is the \qquad regression coefficient (b) when Y is predicted by X ? \qquad
a) .12
b) 2.43 * \qquad
c) .375
d) .45 \qquad
\qquad

Difficult Item (51\%)

$$
\begin{aligned}
Z & =\frac{[\ln (1-p)]-\ln (p)}{1.7} \\
Z & =\frac{(\ln (.49)-\ln (.51))}{1.7} \\
& =\frac{(-.713+.673)}{1.7} \\
& =-.004 / 1.7 \\
& =-.00235
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Easy Item ($\mathbf{1 0 0 \%}$)

- For the following set of data [lllllll $\begin{array}{llll}9 & 5 & 5 & 2\end{array}$ 4, the mean is
a) 4
b) 5 *
c) 4.5
d) 6

Difficult Item (100\%)

$$
\begin{aligned}
Z & =\frac{[\ln (1-p)]-\ln (p)}{1.7} \\
Z & =\frac{(\ln (0)-\ln (1))}{1.7} \\
& =\text { error }
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Optimum Difficulty

- Mathematically: half-way between chance and 100\%.
- Steps (assuming a 5 -choice test) \qquad

1. Find half-way between 100% and chance

- $1-.2=.8, .8 / 2=.4$ \qquad

2. Add this value to chance alone

- $.4+.2=.6$
- Alternately: Chance + 1.0 / 2 = optimum difficulty
- A good test will have difficulty values between .30 and .70

Discriminability

- Can be defined in 2 ways:

1. How well does each item distinguish (discriminate) between individuals who are scoring high and low on the test as a whole (e.g. the trait of interest).
2. Or simply how well is each item related to the trait (e.g. loadings in factor analysis)

- 1 and 2 are really the same the more an item is related to the trait the better it can distinguish high and low scoring individuals

Cal State Northridge. P5y 427

Discriminability

\qquad

- Extreme Group Method
- First
- Identify two "extreme" groups
\qquad
- Top third vs. bottom third
- Second
- Compute "Difficulty" for the top group
- Compute "Difficulty" for the bottom group
- Compute the difference between Top Difficulty and Bottom Difficulty
- Result = Discriminability Index

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Discriminability

- Item/Total Correlation
- Let the total test score "stand in" for the trait of \qquad interest; a roughly estimated "factor" of sorts
\qquad
- Correlate each item with the total test score; items with higher item/total correlations are more discriminating
- These correlations are like rough factor loadings

Discriminability

\qquad

- Point Biserial Method
- If you have dichotomous scored items (e.g. MMPI) \qquad or items with a correct answer
- Correlate the proportion of people getting each \qquad item correct with total test score.
- One dichotomous variable (correct/incorrect) correlated with one continuous variable (total
\qquad score) is a Point-Biserial correlation
- Measures discriminability
\qquad

Cal State Northridge- Psy 427

Discriminability

- Point

Biserial Method

tem	Item-Total
"43.1 prefer to pass by people I know..."	0.490
"46. I ama very scociable person."	0.623
"82. I like to go to parties and other affairs ..."	0.348
"151. It makes me uncomfortable to put on a stunt at a party..."	0.350
"160. I find it hard to make talk when I meet new people."	0.589
"178. I wish I were not so shy."	0.47
245. In a group of people I would not be embarrassed.."	0.444
-248. Iam likely not to speak to people until they speak to me."	0.558
-257. In school I found it very hard to talk in front of the class."	0.379
262. I seem to make friends about as quickly as others do."	0.542
-264. Idisilike having people around me."	0.460
-290. Often I cross the street in order not to meet someone I see."	0.351
"292. Ilike parties and socials."	0.622
"301. I Thave no dread of going into a room by myself ..."	0.466
"304. Whenever possible I avoid being in a crowd."	0.585
-316. At parties I am more likely to sit by myself or..."	0.635
"319. Ilove to go to dances."	0.352
-328. I am never happier than when alone."	0.326
"331. I enjoy social gatherings just to be with people."	0.562
"335. I enjoy the excitement of a crowd."	0.490
336. Ido not mind meeting strangers."	0.565
-339. My worries seem to disappear when I get into a crowd.	0.306
-408. Some people think it's hard to get to know me."	0.385
"410. I spend most of my spare time by myself."	0.461

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Discriminability

- The discimination can be standardized in to a Z-value as well
$\mathrm{Z}=1 / 2[\ln (1+r)-\ln (1-r)]$

Discriminability

\qquad

- The discimination can be standardized in to a
\qquad
Z-value as well

Correlation	Z-Score
0.10	0.100
0.25	0.255
0.50	0.549
0.75	0.973
0.80	1.099
0.90	1.472
0.95	1.832
0.99	2.647

Cal State Northridge- Psy 427

Discriminability

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Selecting Items

- Using Difficulty and Discrimination together \qquad

Cal State Northridge $\cdot P_{5 y} 427$

Item Characteristic Curves

- A graph of the proportion of people getting each item correct, compared to total scores on the test.
- Ideally, lower test scores should go along with lower proportions of people getting a particular item correct.
- Ideally, higher test scores should go along with higher proportions of people getting a particular item correct.

Item Characteristic Curves

Item Characteristic Curves

Cal State Northridge $\cdot P_{5 y} 427$

Item Characteristic Curves

\qquad

Item Characteristic Curves

Cal State Northridge $\cdot P_{5 y} 427$
43

Item Characteristic Curves

Cal State Northridge- Psy 427
44

\qquad

Item Characteristic Curves

Cal State Northridge $\cdot P_{5 y} 427$
46

Item Characteristic Curves

Cal State Northridge- Psy 427
47

\qquad

Item Characteristic Curves

Cal State Northridge $\cdot P_{5 y} 427$
49

Item Characteristic Curves

Cal State Northridge- Psy 427
50

\qquad

Item Characteristic Curves

Cal State Northridge $\cdot P_{5 y} 427$

Item Characteristic Curves

Cal State Northridge-Psy 427
53

\qquad

Item Characteristic Curves

Cal State Northridge - Psy 427

Item Characteristic Curves

\qquad

Item Characteristic Curves

Cal State Northridge. P5y 427

Item Characteristic Curves

Cal State Northridge- Psy 427
59

\qquad

Item Characteristic Curves

Cal State Northridge $\cdot P_{5 y} 427$

Item Characteristic Curves

Cal State Northridge- Psy 427

\qquad

Item Characteristic Curves

Cal State Northridge. P5y 427

Item Characteristic Curves

Other Evaluation Techniques

- Item Response Theory
- viewing item response curves at different levels of difficulty
- Looks at standard error at different ranges of the trait you are trying to measure
- More on this in the next topic

Other Evaluation Techniques

- Criterion-Referenced Tests
- Instead of comparing a score on a test or scale to other respondents' scores we can compare each individual to what they "should have scored".
- Requires that there is a set objective in order to assess whether the objective has been met
- E.g. In intro stats students should learn how to run an independent samplest-test a criterion referenced test could be used to test this. This needs to be demonstrated before moving on to another objective.

Other Evaluation Techniques

- Criterion-Referenced Tests
- To evaluate CRT items
- Give the test to 2 groups one exposed to the material and one that has not seen the material
- Distribute the scores for the test in a frequency polygon
- The antimode (leasts frequent value) represents the cut score between those who were exposed to the material and those who weren't
- Scores above the cut score are assumed to have mastered the material, and vice versa

Criterion Referenced Test

Other Evaluation Techniques

- Criterion-Referenced Tests
- Often used with Mastery style learning
- Once a student indicates they've "mastered" the material he/she moves on to the next "module" of material \qquad
- If they do not pass the cut score for mastery they receive more instruction until they can master the material

